1.11: Unique Factorization (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    82293
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Our goal in this chapter is to prove the following fundamental theorem.

    Theorem \(\PageIndex{1}\): The Fundamental Theorem of Arithmetic

    Every integer \(n>1\) can be written uniquely in the form \[n=p_1p_2\dotsm p_s,\nonumber\] where \(s\) is a positive integer and \(p_1,p_2,\dotsc,p_s\) are primes satisfying \[p_1\le p_2\le\dotsb\le p_s.\nonumber\]

    Remark \(\PageIndex{1}\)

    If \(n=p_1p_2\dotsm p_s\) where each \(p_i\) is prime, we call this the prime factorization of \(n\). Theorem \(\PageIndex{1}\) is sometimes stated as follows:

    Every integer \(n>1\) can be expressed as a product \(n=p_1p_2\dotsm p_s\), for some positive integer \(s\), where each \(p_i\) is prime and this factorization is unique except for the order of the primes \(p_i\).

    Note for example that \[\begin{split} 600 &=2\cdot 2\cdot 2\cdot 3\cdot 5\cdot 5 \\ &=2\cdot 3\cdot 2\cdot 5\cdot 2\cdot 5 \\ &=3\cdot 5\cdot 2\cdot 2\cdot 2\cdot 5 \\ &\quad\text{etc.} \end{split}\]

    Perhaps the nicest way to write the prime factorization of \(600\) is \[600=2^3\cdot 3\cdot 5^2.\nonumber\]

    In general it is clear that \(n>1\) can be written uniquely in the form

    \[\label{eq:1}n=p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s},\text{ some }s\geq 1,\]

    where \(p_1<p_2<\dotsb<p_s\) and \(a_i\ge 1\) for all \(i\). Sometimes \(\eqref{eq:1}\) is written \[\boxed{n=\prod_{i=1}^s p_i^{a_i}}\,.\nonumber\] Here \(\displaystyle\prod\) stands for product, just as \(\displaystyle\sum\) stands for sum.

    To prove Theorem \(\PageIndex{1}\) we need to first establish a few lemmas.

    Lemma \(\PageIndex{1}\)

    If \(a\mid bc\) and \(\gcd(a,b)=1\) then \(a\mid c\).

    Proof

    Since \(\gcd(a,b)=1\) by Bezout’s Lemma there are \(s\), \(t\) such that \[1=as+bt.\nonumber\] If we multiply both sides by \(c\) we get \[c=cas+cbt=a(cs)+(bc)t.\nonumber\] By assumption \(a\mid bc\). Clearly \(a\mid a(cs)\) so, by Theorem 3.1, \(a\) divides the linear combination \(a(cs)+(bc)t=c\).

    Definition \(\PageIndex{1}\)

    We say that \(a\) and \(b\) are relatively prime if \(\gcd(a,b)=1\).

    So we may restate Lemma \(\PageIndex{1}\) as follows: If \(a\mid bc\) and \(a\) is relatively prime to \(b\) then \(a\mid c\).

    Example \(\PageIndex{1}\)

    It is not true generally that when \(a\mid bc\) then \(a\mid b\) or \(a\mid c\). For example, \(6\mid 4\cdot 9\), but \(6\nmid 4\) and \(6\nmid 9\). Note that Lemma \(\PageIndex{1}\) doesn’t apply here since \(\gcd(6,4)\ne 1\) and \(\gcd(6,9)\ne 1\).

    Lemma \(\PageIndex{2}\): Euclid's Lemma

    If \(p\) is a prime and \(p\mid ab\), then \(p\mid a\) or \(p\mid b\).

    Proof

    Assume that \(p\mid ab\). If \(p\mid a\) we are done. Suppose \(p\nmid a\). Let \(d=\gcd(p,a)\). Note that \(d>0\) and \(d\mid p\) and \(d\mid a\). Since \(d\mid p\) we have \(d=1\) or \(d=p\). If \(d\ne 1\) then \(d=p\). But this says that \(p\mid a\), which we assumed was not true. So we must have \(d=1\). Hence \(\gcd(p,a)=1\) and \(p\mid ab\). So by Lemma \(\PageIndex{1}\), \(p\mid b\).

    Lemma \(\PageIndex{3}\)

    Let \(p\) be prime. Let \(a_1,a_2,\dotsc,a_n\), \(n\ge 1\), be integers. If \(p\mid a_1a_2\dotsm a_n\), then \(p\mid a_i\) for at least one \(i\in\{1,2,\dotsc,n\}\).

    Proof

    We use induction on \(n\). The result is clear if \(n=1\). Assume that the lemma holds for \(n\) such that \(1\le n\le k\). Let’s show it holds for \(n=k+1\). So assume \(p\) is a prime and \(p\mid a_1a_2\dotsm a_ka_{k+1}\). Let \(a=a_1a_2\dotsm a_k\) and \(b=a_{k+1}\). Then \(p\mid a\) or \(p\mid b\) by Lemma \(\PageIndex{2}\). If \(p\mid a=a_1\dotsm a_k\), by the induction hypothesis, \(p\mid a_i\) for some \(i\in\{1,\dotsc,k\}\). If \(p\mid b=a_{k+1}\) then \(p\mid a_{k+1}\). So we can say \(p\mid a_i\) for some \(i\in\{1,2,\dotsc,k+1\}\). So the lemma holds for \(n=k+1\). Hence by PMI it holds for all \(n\ge 1\).

    Lemma \(\PageIndex{4}\): Existence Part of Theorem \(\PageIndex{1}\)

    If \(n>1\) then there exist primes \(p_1,\dotsc,p_s\) for some \(s\ge 1\) such that \[n=p_1p_2\dotsm p_s\nonumber\] and \(p_1\le p_2\le\dotsb\le p_s\).

    Proof

    Proof by induction on \(n\), with starting value \(n=2\): If \(n=2\) then since \(2\) is prime we can take \(p_1=2\), \(s=1\). Assume the lemma holds for \(n\) such that \(2\le n\le k\). Let’s show it holds for \(n=k+1\). If \(k+1\) is prime we can take \(s=1\) and \(p_1=k+1\) and we are done. If \(k+1\) is composite we can write \(k+1=ab\) where \(1<a<k+1\) and \(1<b<k+1\). By the induction hypothesis there are primes \(p_1,\dotsc,p_u\) and \(q_1,\dotsc,q_v\) such that \[a=p_1\dotsm p_u\text{ and }b=q_1\dotsm q_v.\nonumber\] This gives us \[k+1=ab=p_1p_2\dotsm p_uq_1q_2\dotsm q_v,\nonumber\] that is \(k+1\) is a product of primes. Let \(s=u+v\). By reordering and relabeling where necessary we have \[k+1=p_1p_2\dotsm p_s\nonumber\] where \(p_1\le p_2\le\dotsb\le p_s\). So the lemma holds for \(n=k+1\). Hence by PMI, it holds for all \(n>1\).

    Lemma \(\PageIndex{5}\): Uniqueness Part of Theorem \(\PageIndex{1}\)

    Let \[n=p_1p_2\dotsm p_s \mbox{ for some } s\ge 1,\nonumber\] and \[n=q_1q_2\dotsm q_t \mbox{ for some } t\ge 1,\nonumber\] where \(p_1,\dotsc,p_s,q_1,\dotsc,q_t\) are primes satisfying \[p_1\le p_2\le\dotsb\le p_s\nonumber\] and \[q_1\le q_2\le\dotsb\le q_t.\nonumber\] Then, \(t=s\) and \(p_i=q_i\) for \(i=1,2,\dotsc,t\).

    Proof

    Our proof is by induction on \(s\). Suppose \(s=1\). Then \(n=p_1\) is prime and we have \[p_1=n=q_1q_2\dotsm q_t.\nonumber\] If \(t>1\), this contradicts the fact that \(p_1\) is prime. So \(t=1\) and we have \(p_1=q_1\), as desired. Now assume the result holds for all \(s\) such that \(1\le s\le k\). We want to show that it holds for \(s=k+1\). So assume \[n=p_1p_2\dotsm p_kp_{k+1}\nonumber\] and \[n=q_1q_2\dotsm q_t\nonumber\] where \(p_1\le p_2\le\dotsb\le p_{k+1}\) and \(q_1\le q_2\le\dotsb\le q_t\). Clearly \(p_{k+1}\mid n\) so \(p_{k+1}\mid q_1\dotsm q_t\). So by Lemma \(\PageIndex{3}\) \(p_{k+1}\mid q_i\) for some \(i\in\{1,2,\dotsc,t\}\). It follows from Exercise 10.9 that \(p_{k+1}=q_i\). Hence \(p_{k+1}=q_i\le q_t\).

    By a similar argument \(q_t\mid n\) so \(q_t\mid p_1\dotsm p_{k+1}\) and \(q_t=p_j\) for some \(j\). Hence \(q_t=p_j\le p_{k+1}\). This shows that \[p_{k+1}\le q_t\le p_{k+1}\nonumber\] so \(p_{k+1}=q_t\). Note that \[p_1p_2\dotsm p_kp_{k+1}=q_1q_2\dotsm q_{t-1}q_t\nonumber\] Since \(p_{k+1}=q_t\) we can cancel this prime from both sides and we have \[p_1p_2\dotsm p_k=q_1q_2\dotsm q_{t-1}.\nonumber\] Now by the induction hypothesis \(k=t-1\) and \(p_i=q_i\) for \(i=1,\dotsc,t-1\). Thus we have \(k+1=t\) and \(p_i=q_i\) for \(i=1,2,\dotsc,t\). So the lemma holds for \(s=k+1\) and by the PMI, it holds for all \(s\ge 1\).

    Now the proof of Theorem \(\PageIndex{1}\) follows immediately from Lemma \(\PageIndex{4}\) and Lemma \(\PageIndex{5}\).

    Remark \(\PageIndex{2}\)

    If \(a\) and \(b\) are positive integers we can find primes \(p_1,\dotsc,p_k\) and integers \(a_1,\dotsc,a_k,b_1,\dotsc,b_k\) each \(\ge 0\) such that \[\label{eq:2} \begin{cases} a=p_1^{a_1}p_2^{a_2}\dotsm p_k^{a_k} \\ b=p_1^{b_1}p_2^{b_2}\dotsm p_k^{b_k} \end{cases} \] For example, if \(a=600\) and \(b=252\) we have \[\begin{aligned} 600 &=2^3\cdot 3^1\cdot 5^2\cdot 7^0 \\ 252 &=2^2\cdot 3^2\cdot 5^0\cdot 7.\end{aligned}\] It follows that \[\gcd(600,252)=2^2\cdot 3^1\cdot 5^0\cdot 7^0.\nonumber\] In general, if \(a\) and \(b\) are given by \(\eqref{eq:2}\) we have \[\boxed{\gcd(a,b)=p_1^{\min(a_1,b_1)}p_2^{\min(a_2,b_2)}\cdots p_k^{\min (a_k,b_k)}}\,.\nonumber\] This gives one way to calculate the gcd provided you can factor both numbers. But generally speaking factorization is very difficult! On the other hand, the Euclidean algorithm is relatively fast.

    Exercise \(\PageIndex{1}\)

    Find the prime factorizations of \(1147\) and \(1716\) by trying all primes \(p\le\sqrt{1147}\) (\(p\le\sqrt{1716}\)) in succession.

    1.11: Unique Factorization (2024)
    Top Articles
    Sandals Travel Agent Login
    I’m The Viral Beret Girl On The “Whatever” Podcast—Here’s My Take On The Show
    Libiyi Sawsharpener
    Bashas Elearning
    Junk Cars For Sale Craigslist
    Chambersburg star athlete JJ Kelly makes his college decision, and he’s going DI
    Online Reading Resources for Students & Teachers | Raz-Kids
    Top Scorers Transfermarkt
    Soap2Day Autoplay
    My Boyfriend Has No Money And I Pay For Everything
    Tlc Africa Deaths 2021
    Over70Dating Login
    سریال رویای شیرین جوانی قسمت 338
    Guidewheel lands $9M Series A-1 for SaaS that boosts manufacturing and trims carbon emissions | TechCrunch
    Tamilrockers Movies 2023 Download
    使用 RHEL 8 时的注意事项 | Red Hat Product Documentation
    Chelactiv Max Cream
    Inter-Tech IM-2 Expander/SAMA IM01 Pro
    Ruben van Bommel: diepgang en doelgerichtheid als wapens, maar (nog) te weinig rendement
    Eine Band wie ein Baum
    Robin D Bullock Family Photos
    Euro Style Scrub Caps
    All Breed Database
    Terry Bradshaw | Biography, Stats, & Facts
    2021 Volleyball Roster
    Trivago Myrtle Beach Hotels
    Cardaras Funeral Homes
    Movies - EPIC Theatres
    Little Einsteins Transcript
    Happy Shuttle Cancun Review
    Progressbook Newark
    Rugged Gentleman Barber Shop Martinsburg Wv
    Life Insurance Policies | New York Life
    Napa Autocare Locator
    new haven free stuff - craigslist
    Max 80 Orl
    Nsu Occupational Therapy Prerequisites
    Diana Lolalytics
    Family Fare Ad Allendale Mi
    Elizaveta Viktorovna Bout
    Bella Thorne Bikini Uncensored
    2023 Nickstory
    Sas Majors
    Trivago Anaheim California
    Santa Clara County prepares for possible ‘tripledemic,’ with mask mandates for health care settings next month
    Here's Everything You Need to Know About Baby Ariel
    Flappy Bird Cool Math Games
    303-615-0055
    Richard Mccroskey Crime Scene Photos
    Coleman Funeral Home Olive Branch Ms Obituaries
    Superecchll
    Coldestuknow
    Latest Posts
    Article information

    Author: Sen. Ignacio Ratke

    Last Updated:

    Views: 5667

    Rating: 4.6 / 5 (76 voted)

    Reviews: 91% of readers found this page helpful

    Author information

    Name: Sen. Ignacio Ratke

    Birthday: 1999-05-27

    Address: Apt. 171 8116 Bailey Via, Roberthaven, GA 58289

    Phone: +2585395768220

    Job: Lead Liaison

    Hobby: Lockpicking, LARPing, Lego building, Lapidary, Macrame, Book restoration, Bodybuilding

    Introduction: My name is Sen. Ignacio Ratke, I am a adventurous, zealous, outstanding, agreeable, precious, excited, gifted person who loves writing and wants to share my knowledge and understanding with you.